
Empirical Analysis for Web Based Projects -
Software Components Reuse Techniques

1 Prof. Vuppu Padmakar 2 Dr. B V Ramana Murthy,

1 Department of Computer Science and Engineering, Chilkur Balaji Institute of Technology,

Hyderabad, India
2 Department of Computer Science and Engineering, Jyotishmathi College of Technology and Science, Shamirpet,

Hyderabad, India

Abstract-The basic connect of systematic software reuse is
simple. Develop systems of components of a reasonable size and
reuse them. Then extend the idea of component system beyond
code alone to requirements, analysis models, design, and test. All
the stages of the software development process are subject to
reuse. Developers can save problem- solving effort all along the
development chain. They can minimize redundant work. They
can enhance the reliability of their work because each reused
component system has already been reviewed and inspected in
the course of its original development. Code components have
passed unit and system test elsewhere and often have stood the
test of use in the field. By these means developers can reduce
development time from years to months, or to weeks instead of
months.

Keywords-Component, web engineering, azail

[1] INTRODUCTION & RELATED WORK.
The experience at companies such as AT & T, Brooklyn
Union Gas, Ericsson, GTE, Hewlett-Packard, IBM, Motorola,
NEC and Toshiba show that significant cost and time savings
result from systematic reuse. Other companies, those that are
doing nothing in particular about reuse, provide a base line.
Several organizations have obtained reuse levels around 90%
in certain projects or areas:
AT & T: 40 – 92 % in Telecom operation support system
software.
Brooklyn Union Gas: 90 – 95 % in a process layer, and 67%
in a user interface and business Object layer.
Ericsson AXE: 90 % in hundreds of customer-specific
configurations.
Motorola: 85 % reuse and a 10: 1 productivity savings ratio
in compiler and compiler-tool test Suites.
Many organizations have achieved through reuse persuades
us that management may expect substantial gains:
Time to market: reductions of 2 to 5 times
Defect density: reductions of 5 to 10 times
Maintenance cost: reductions of 5 to 10 times
Overall software development cost: reduction of around
15% to as much as 75% for long-term projects.

 Components are sometimes referred to as assets or work
products. While the terms refer to the same underlying

reality, they carry somewhat different connotations.
Components suggests interfaces and packaging Asset brings
to mind matters of ownership and management work product
highlights the fact that a components is a unit in a cycle of
work, the software life cycle.

Revolution in application development: The growing
popularity and availability of component-based software
technologies is fueling a change in the habits and
expectations of millions of programmers. New application
development tools and technologies have made components
the key to reusing larger grained objects to build application
rapidly. These technologies include Micro Soft Visual Basic,
ActiveX and OLE, SUN’s JAVA and CORBA interface
definition language. Internet computing using applets and
scripting languages such as VB Scripts and Java Scripts make
it easy to develop and quickly deploy novel interactive
applications across the enterprise. Component objects models
and distributed computing infrastructure in the form of
OMGs. CORBA middle ware technologies or Microsoft
operating system support for the distributed components
object model and OLE technology enable more complex
distributed large-grain objects and components to e used.
These technologies define and mange component interfaces
separately from component implementations.
Practical reuse has also been quite successful with non-
object-oriented languages such as COBAL and FORTRAN.
These non-object-oriented components-based technologies
reinter face the fact the successful reuse is not really about
object oriented languages or class libraries. While object
oriented languages have many of the qualities sought when
developing components, they are not sufficient in themselves.
There is a growing commercial market for components
providing larger chunks of functionality than typical object
classes do called ActiveX components or OLE components
OCXs.
As an increasing number of these component-based
applications are constructed and deployed by independent
developers. Business objects and components will be defined
and constructed by separate groups, yet must work together to
meet business information system needs.

Vuppu Padmakar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4398-4404

www.ijcsit.com 4398

Systematic Approaches:
1. Engineering
2. Process
3. Organizational
4. Business-oriented

1. Engineering: The technology and methods deficiencies
include
a) Means to identify clearly elements of the models that

describe requirements, architecture, analysis, design, test,
and implementation along the development stream. Clear
identification underlines that ability either to reuse them
or to allow them to be candidates for replacement by
reusable component systems.

b) Lack of components to reuse. This category covers a host
of obstacles: failure to select and strengthen components
for reuse in the first place lack of techniques to package,
document, classify, and identify components inadequate
design and implementation of library systems poor
access to component libraries for potential reuses.

c) Lack of flexibility in potentially reusable components if
a component is rigid; it fits few or sometimes no reuse
opportunities. In the past our methods for designing a
flexible, layered architecture have been immature. Our
ability to adapt a component to fit a new need or a new
architecture has been limited.

d) Lack of tools to carry out reuse procedures. A number of
new tools are needed tools that can be integrated into
reuse-oriented support environments.

2. Process: In the engineering and technology level, the
traditional process of software development is itself deficient
in opportunities to encourage reuse. Nowhere in most of the
processes that are used to day is there a point where
developer sit down and ask themselves. The potential role of
the architect in reuse has not been defined. Similarly, the role
of a reuse engineer or a reusable component engineer has not
been worked out. The places in the process at which
developers might consider inserting component systems have
not been built in. after analysis, design, or code components
have been blocked out, review, inspection and walkthrough
procedures fail to contemplate reuse.
3. Organizational: very few organizations systematically
practice reuse as an established best practice. One reason is
that they focus on one project at a time. Reuse requires a
border focus. The management group has to look ahead,
focusing on a set of projects that cover an application area,
that is, that they believe process some characteristics in
common. This area is a domain from this domain someone –
a domain engineer has to identify that reusable elements and
carry on from there.
4. Business: Reuse takes capital and funding it takes capital
to finance domain engineering. The building of components
systems strong enough to justify reuse, and the creation of in
house libraries of components. These operations tie up capital
until projects that reuse the components pay for them. It takes
funding to provide education, training and access to vendor

supplied components. It takes money to cope with an unstable
domain as when the initial domain is poorly defined or when
similar domains in different organizations must be merged. It
may take money to penetrate the legal and social reasons for
sharing or not sharing software.

[2] REUSE INVOLVE CONCURRENT PROCESSES
The reuse community has come to understand on the basis of
its experience that making systematic reuse effective requires
major changes in the way organizations develop software. In
the past the software process has focused on developing each
application from scratch. At most, individual developers have
shared code on an ad hoc basis.
The new way links many application development projects
with processes that identify and create reusable assets. To do
so, they must overhaul their business and organizational
structures. We have come to understand that this significant
organizational change can be thought of in terms of business
process reengineering. It is rethinking of everything
pertaining to software from there stand point of those who
ultimately benefit from good software obtained quickly
reliably and inexpensively.
Substantial reuse requires, first of all, that reusable assets be
identified in terms of a system architecture. Then the assets
must be created and appropriately packaged and stocked.
Potential users must have confidence in the components
integrity, secondly an organization must refashion its systems
engineering process so that developer can identify
opportunities for reuse and work selected components into
the process.
Systematic software reuse is thus the purposeful creation,
management, support, and reuse of assets. As illustrated in
figure below this can be expressed in terms of four concurrent
processes. We call the people in the reusable asset processes,
creators, and those in the development projects, reusers.

Create: This process identifies and provides reusable assets
appropriate to the needs of the reusers. These assets may be
new, reengineered, or purchased of various kinds such as

Vuppu Padmakar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4398-4404

www.ijcsit.com 4399

code, interfaces, architectures, tests, tools and so on. This
process may include activities such as inventory and analysis
of existing applications and assets, domain analysis,
architecture, definition, assessment of reusers needs
technology evolution reusable asset testing and packaging.
Reuse This process uses the reusable assets to produce
applications or products. Activities include the examination
of domain models and reusable assets, the collection and
analysis of end-user needs the design and implementation of
additional components adaptation of provided assets, and the
construction and testing of complete applications.
Support: This process supports the overall set of processes
and manages and maintains the reusable asset collection.
Activities may include the certification of submitted reusable
assets. Classification and indexing in some library,
announcing and distributing the asset, providing additional
documentation, collecting feedback and defect reports from
reusers.
Manage: This process plans, initiates, resources, tracks and
coordinates the other processes. Activities include setting
priorities and schedules for new asset construction, analyzing
the impact and resolving conflict concerning alternative
routes when a needed asset is not available, establishing
training and setting direction.

Domain engineering:
In most reuse programs to date, a key activity associated with
the create process is a fairly systematic way of identifying
potentially reusable assets, and an architecture to enable their
reuse. This activity is called domain engineering in the
systematic reuse community. The development of reuse
process is also sometimes called application system
engineering. The essence of systematic software reuse is that
initial investment by the creator to identify and carefully
structure reusable assets will enable reusers to build
application rapidly and cost effectively.
Domain engineering reflects the idea that sharing between
related applications occurs in one or more application domain
or problem domain or solution domains. Reuse of the assets
then occurs during a subsequent application system
engineering phase.
Sometimes domain engineering has been loosely described as
just lke ordinary systems engineering such as structure
analysis structured design or object oriented analysis object
oriented design except that it applies to a family of systems
rather than just one. It is like systems engineering but it is
also more that one of kind systems engineering. It seeks the
family of similar systems that can inhabit a domain. As a
result domain engineering is more complex that established
systems engineering. Therefore management should not turn
to it without forethought and should establish domain
engineering. Therefore management should not turn to it
without forethought and should establish domain engineering
only when it foresees a business benefit in reuse.

Application System Engineering:
This activity has long existed in the form of building
applications from scratch, possibly with the aid of a few back
pocket programs. The goal now is to make use of the
extensive set of reusable assets that have been provided. The
intent is to build the application much more rapidly and cost
effectively.
Application system engineering specializes and assembles
these components into application. These applications are
largely constrained to fit the architecture and the components.
Typical applications usually consist of components from
several different sets of components.
Starting from the models of the architecture and reusable
components, the reusers puts together available reusable
assets to meet at least the bulk of the new set of requirements.
This is sometimes called a delta implementation because it is
an outgrowth of what already exists.
The reusers have to find and specialize components by
exploiting a variability mechanisms provided. If it is not
possible to meet all the new requirements with the available
reusable components additional programming will be needed.
This programming may be done by the creator, producing
new reusable components or by the reusers.
Finally the components are integrated and the application
tested.

Domain engineering Application system Engineering

Define and scope domain

Analysis examples needs trends

Develop domain model and
architecture

Structure commonality and
variability

Engineer reusable component
systems languages and tools

Do delta analysis and design
relative to domain model and
architecture

Use component systems as
starting point

Find specialize and integrate
components

Exploit variability mechanism
language generators.

[3] MOTIVATION AND BACKGROUND

Web-based systems [1] and applications deliver a complex
array of content and functionality, to a broad population of
end-users. Web engineering is the process that is used to
create high-quality web applications. Web engineering is not
a perfect clone of a software engineering, but it borrows
many of software engineering fundamental concepts and
principles. In addition, the web engineering process
emphasizes similar technical and management activities are
conducted, but the overriding Philosophy dictates a
disciplined approach to the development of a computer-based
system. Web engineers and non-technical content developers
[2] create the web applications. As web becomes increasingly

Vuppu Padmakar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4398-4404

www.ijcsit.com 4400

integrated in business strategies, for small and large
companies, the need to build reliable, usable, and adaptable
systems grows in importance.
Contrary to popular belief, architecture is an important aspect
of agile software development efforts, just like traditional
efforts, and is a critical part of scaling agile approaches to
meet the real-world needs of modern organizations. But, agile
approach architecture a bit differently than traditionalists do
architecture provides the foundation from which systems are
built and an architectural model defines the vision on which
your architecture is based. The scope of architecture can be
that of a single application, of a family of applications, for an
organization, or for an infrastructure such as the Internet that
is shared by many organizations. Regardless of the scope, my
experience is that you can take an agile approach to the
modeling, development, and evolution of architecture.

An agile approach: Focus on people, not technology or
techniques [3]
Keep it simple
Work iteratively and incrementally
Roll up your sleeves
Build it before you talk about it
An Agile Approach
First and foremost, the values, principles, and practices of
Agile Modeling (AM) should help to guide your enterprise
architecture modeling and documentation efforts. This is just
a good start though these issues are:
Focus on people, not technology or techniques
Keep it simple
Work iteratively and incrementally
Roll up your sleeves
Look at the whole picture
Make enterprise architecture attractive to your customers
Potential Problems With The Agile Approach
No approach is perfect, including this one. We would like to
address the issues:
It does not include an explicit way to ensure compliancy
(although having enterprise architects embedded on the teams
goes a long way towards this). It depends on people being
responsible.
It requires you to actively strive to keep things simple.
It requires you to accept an agile approach to modeling and
documentation[8].

 Web Engineering
The World Wide Web and the Internet that empowers it are
arguably the most important developments in the history of
computing. The technologies have drawn us all into the
information age. They have become integral to daily life in
the first decade of the twenty-first century. For those who can
remember a world without the web, the chaotic growth of the
technology hackers backs to another era- the early days of
software.

[4] ATTRIBUTES OF WEB-BASED SYSTEMS AND

APPLICATIONS:
In the early days of World Wide Web “Web Sites” consisted
of little more than a set of linked hypertext files, that
presented information, using text and limited graphics. As
time passed, HTML was augmented by Development Tools
(e.g. XML, Java) that enabled web engineers, to provide
computing capability along with information. Thus web-
based systems and applications were born. Today, web
application has evolved into sophisticated computing tools
that not only provide standalone function to the end user, but
also have been integrated with corporate databases and
business applications[10]. There is little debate that web
applications are different from many other categories of
computer software. Powell summarizes the primary
differences, when he states that web-based systems “involve
a mixture between print publishing and software
development, between marketing and computing, between
internal communications and external relations, and between
art and technology.” . The following attributes are
encountered in the web applications.
Network Intensiveness: A web application resides on a
network and must serve the needs of a diverse community of
clients.
Concurrency: A large number of users may access the web
application at one time. In many cases, the pattern of usage
among end-user will vary greatly.
Unpredictable Load: The number of users of the web
application may vary by orders of magnitude, from day to
day.
Performance: If a web application user must wait too long,
he or she may decide to go elsewhere.
Availability: Users of popular web application often demand
access on a “24/7/365” basis.
Data Driven: The primary function of many web
applications is to use hypermedia to present text, graphics,
audio, and video content to the end-user. In addition, web
applications are commonly used to access information that
exists on databases that were not originally an integrated part
of the web-based environment.
Content Sensitive: The quality and aesthetic nature of
content remains an important determinant of the quality of a
web application.
Continuous Evolution: Unlike conventional application
software that evolves over a series of planned,
chronologically spaced releases, web application evolves
continuously.
Immediacy: The compiling needs to get software to market
quickly. It is a characteristic of many application domains.
Security: Because web applications are available via network
access, it is difficult, if not impossible, to limit the population
of end-users who may access the application. In order to
protect the sensitive content and provide secure modes of
data transmission, strong security measures must be
implemented throughout the infrastructure, that supports a
web application and within the application itself.

Vuppu Padmakar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4398-4404

www.ijcsit.com 4401

Web Application Engineering Layers: The development of
web-based systems and applications incorporates Specialized
Process Models, Software Engineering Methods adapted to
the characteristics of web application development and a set
of important enabling technologies. Process, methods and
technologies provide a layered approach to web engineering
that is conceptually identical to the software engineering
layer.
Process: Web engineering process embraces the agile
development philosophy [9].
Agile development emphasizes a lean development approach
that incorporates rapid development cycles. Aoyama [64]
describes the motivation for the agile approach in the
following manner: The Internet changed software
development’s [65] top priority from what to when. Reduced
time-to-market has become the competitive edge that leading
companies strive for. Thus, reducing the development cycle
is, now, one of the software engineering’s most important
missions. Even when rapid cycle times dominate
development thinking, it is important to recognize that the
problem must still be analyzed, a design should be developed,
implementation should proceed in an incremental fashion,
and an organized testing approach must be initiated.
However, these framework activities must be defined within
a process that (1) embraces change (2) encourages the
creativity and independence of development staff and strong
interaction with web application stakeholders, (3) builds
systems using small development teams, and (4) emphasizes
evolutionary or incremental development, using short
development cycles.
Web Methods: The web engineering methods landscape
encompasses a set of technical tasks that enable a web
engineer to understand, characterize, and then build a high-
quality web application. Web methods can be categorized in
the following manner:
Communication Methods: Communication Methods define
the approach used to facilitate communication between web
engineers and all other web application stakeholders.
Communication techniques are particularly important during
requirements gathering and whenever a web application
increment is to be evaluated.
Requirements Analysis: They provide a basis for
understanding the content to be delivered by a web
application, the function to be provided for the end-user and
the modes of interaction that each class of user will require
for navigation through the web application.
Design Methods: They encompass a series of design
techniques that address web application content, application
and information architecture, and interface design and
navigation structure.
Testing Methods: They incorporate formal technical reviews
of both the content and design model and a wide array of
testing techniques that address component level and
architectural issues, navigation testing, usability testing and
configuration testing.

Tools and Technology: They encompass a wide array of
content description and modeling languages.
Web Engineering Framework: To be effective, any
engineering process must be adaptable[5]. That is, the
organization of the project team, the modes of
communication among team members, the engineering
activities and tasks to be performed, the information that is
collected and created and themethods used to produce a high-
quality product must all be adapted to the people doing the
work.
Web Application is often delivered incrementally: That is,
framework activities will occur repeatedly as each increment
is engineered and delivered.
Changes will occur frequently: These changes may occur as
a result of the evaluation of a delivered increment or as a
consequence of changing business condition.
Business Analysis: Business analysis defines the
business/organizational context for the web application. In
addition, stakeholders are identified, potential changes in
business environment or requirements are predicted and
integration between the web application and other business
applications, databases and functions are also designed.
Formulation: Formulation is a requirements gathering
activity, involving all stakeholders. The intent is to describe
the problem that the web application is to solve using the best
information available. In addition an attempt is made to
identify areas of uncertainty and where potential changes will
occur.
Planning: The project plan for the web application increment
is created. The plan consists of a task definition and a
timeline schedule for the time period, projected for the
development of the web application increment.
Modeling: Conventional Software Engineering Analysis and
Design tasks are adapted to web application development,
merged and then into the web engineering modeling activity.
The intent is to develop “rapid” analysis and design models
that define requirements and at the same time, represent a
web application that will satisfy them.
Construction: Web engineering tools and technology are
applied to construct the web application that has been
modeled. Once the web application increment has been
constructed, a series of rapid tests are conducted to ensure
that errors in designs are uncovered.
Homepage: Web application should contain useful
information or a simple listing of links that lead a user to
more detail at lower level.
Page Layout: It varies depending upon the type of web
application being developed.
Multimedia: Multimedia options are effective options for
web application.
Engineering Best Practices: Web engineering teams are,
sometimes, under enormous time pressure and will try to take
short-cuts, but a set of fundamental best practices adopted
from the software engineering practices should be applied, if
industry quality web applications are to be built[7].

Vuppu Padmakar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4398-4404

www.ijcsit.com 4402

Product Objectives: It is essential to understand the business
needs and product objectives, even if the details of the web
applications are vague: Many web application developers,
erroneously, believe that vague requirements relieve them
from the need to be sure that the system, they are about to
engineer, has a legitimate business purpose. The end result is
good technical work that results in the wrong system, built
for the wrong reasons, for the wrong audience.
If stakeholders cannot enunciate a business need for the web
application, proceed with extreme caution. If stakeholders
struggle to identify a set of clear objectives for the product,
do not proceed until they can.
User Interaction: The user interaction with the web
application should be described using a scenario-based
approach: stakeholders must be convinced to develop use-
cases to request how various actors will interact with the web
application. These scenarios can then be used for project
planning and tracking to guide analysis and design modeling,
and as important input for the design of tests.
Project Plan: Project Plan, should be developed even if it is
very brief. Then the plan has to be based on a predefined
process framework that is acceptable to all stakeholders.
Because project timeliness is short, schedule granularity
should be fine.
Modeling: Modeling demands time spending to ascertain
what it is being done to build: Generally, comprehensive
analysis and design models are not developed during web
engineering. However, UML class and sequence diagrams
along with other selected UML notation may provide
invaluable insight.
Review the models for consistency and quality: Formal
technical reviews should be conducted throughout a web-
engineering project. The time spent on reviews pays
important dividends because; it often eliminates rework and
results in a web application that exhibits high quality, thereby
increasing customer satisfaction.
Tools and Technology: Tools and Technology that enable to
construct the system with as many reusable components as
possible: A wide array of web application tools is available
for virtually every aspect of web application construction.
Many of these tools enable a web engineer to build
significant portions of the application using reusable
components.
Testing: Don’t rely on early users to debug the web
application design comprehensive test and execute them
before releasing the system. Users of a web application will
often give it one chance. If it fails to
Perform, they move elsewhere-never to return. It is for this
reason that “test first, then deploy” should be an overriding
philosophy, even if deadlines must be stretched.
Other Software: Web application software is different from
other categories of computer software.
Objectives: If stakeholders struggle to identify a set of clear
objectives for the product, it is not advisable proceed, until
they can.

Generic Process: The generic process framework-
communication, planning, modeling, and deployment are
applicable to web engineering[6].
Implementation: Having understood the significance of web
engineering for successful development of web applications,
the fundamental question that arises, for any web developer
is, the concepts relevant for agile, various attributes that are
vital for designing web applications, their relative
significance and the emphasis required for each attribute, for
the successful implementation of the web application using
agile methodology. The present study is a humble beginning,
to explore the concepts of web attributes and the agile &
component technology methodology.
Keeping in view of the elements of web engineering and the
process of developing web based projects based on different
approaches like
1.Traditional T: Uses traditional approach –Waterfall model
2. Application A: Uses Programming Languages from scratch
3. Component C:Uses component for reuse
4. Agile and Component based AC: Reuse & Incremental

along with client interaction
Analytic Hierarchy Process: The Pair wise Comparison
Method was developed by Saaty (1980) in the context of the
Analytic Hierarchy Process (AHP). This method involves
pairwise comparisons to create a ratio matrix. It takes, as
input, the pair wise comparisons and produces the relative
weights as output

[5] DEVELOPMENT OF THE PAIR WISE COMPARISON
MATRIX: The method employs an Underlying scale with
values ranging from 1 to 9 to rate the relative preferences for
two criteria (see table).
Intensity of
Importance

Definition

1 Equal importance
2 Equal to moderate importance
3 Moderate Importance
4 Moderate to strong importance
5 Strong importance
6 Strong to very strong importance
7 Very strong importance
8 Very to extremely strong importance
9 Extreme importance

Source: Saaty Scale for pair wise comparison

[6] DEVELOPMENT OF THE PAIR WISE COMPARISON

MATRIX
This step involves the following operations:
(a) Sum the values in each column of the pair wise
comparison matrix;

 T A C A&C
T 1 1/3 1/7 1/9
A 3 1 1/7 1/8
C 7 7 1 1/9

A & C 9 8 9 1

Vuppu Padmakar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4398-4404

www.ijcsit.com 4403

(b) Divide each element in the matrix by its column total (the
resulting matrix is referred to as the normalized pair wise
comparison matrix);

 T A C A&C
T 0.05 0.02 0.01 0.08
A 0.15 0.06 0.01 0.09
C 0.35 0.44 0.10 0.08

A C 0.45 0.50 0.88 0.75

Compute the average of the elements in each row of the
normalized matrix, that is, divide the sum of normalized
scores for each row .

 T A C A&C w
T 0.05 0.02 0.01 0.08 0.04
A 0.15 0.06 0.01 0.09 0.08
C 0.35 0.44 0.10 0.08 0.24

A C 0.45 0.50 0.88 0.75 0.65

These averages provide an estimate of the relative weights of
the criteria being compared. AHP technique is used to find
the weights of web based development approaches and the
results were as follows
1.Traditional T: Uses traditional approach –Waterfall model
2. Application A:Uses Programming Languages from scratch
3. Component C:Uses component for reuse
4. Agile and Component based AC: Reuse &
Incremental along with client interaction

Approach Weights in %
Traditional T 0.04
Application A 0.08
Component C 0.24
Agile and Component AC 0.65

And the graph has been depicted for the above table which is
as follows

The graph shows that the approach for web based projects is
more significant for Agile and Component base which takes
65% of the weight age when compared to other approaches

[7] CONCLUSION
There are many SDLC models such as Agile, RAD and
Waterfall etc. used in various organizations depending upon
the conditions prevailing in it like v-model gives the
verification and validation for organization and it is very
useful for organization. All these different software
development models have their own advantages and
disadvantages. Nevertheless, in the contemporary commercial
software development world, the fusion of all these
methodologies is incorporated. Timing is very crucial in
software development. If a delay happens in The
development phase, the market could be taken over by the
competitor. Also if a bug’ filled product is launched in a short
period of time (quicker than the competitors), it may affect
the reputation of the company. So, there should be a tradeoff
between the development time and the quality of the product.
Customers don’t expect a bug free product but they expect a
User-friendly product that results in Customer Ecstasy!

REFERENCE
[1] Powell,T.A., Website Engineering Prentice Hall,1999.
[2] Pressman, R. S.,“Can Internet Based Applications be Engineered?”

IEEE Software, September 1998, pp. 104-110.
[3] The Agile Alliiance Home Page ,hhtp//www.agilealliance.org/home
[4] Ambler ,S, “what is Agile Modelling

http://www.agilemodeling.com/index.htm.
[5] Cockburn A.,Agile Software Development: Addison Weley
[6] Cockburn and J HighSmith ., What is Agile Software Development The

People Factor “IEEE computing Vol 34 pp 131-133
[7] DeMarco ,.T,and T Listener .Peopleware second edition
[8] DeMarco ,.T and Boehm,”The Agile Method s Fray “IEEE Computer

Vol 35 pp 90-92.
[9] HighSmith ., J. Agile Software Ecosystem Addision–Wesley.
[10] Highsmith J., “The Methodology Debate” Part -1 Vol 14.

T
4%

A
8%

C
24%

A C
64%

weightage

Vuppu Padmakar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4398-4404

www.ijcsit.com 4404

